Soil stabilization linked to plant diversity and environmental context in coastal wetlands

نویسندگان

  • Hilary Ford
  • Angus Garbutt
  • Cai Ladd
  • Jonathan Malarkey
  • Martin W. Skov
چکیده

BACKGROUND Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. QUESTION We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. METHODS We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. RESULTS Soil erosion rates fell with increased plant species richness (R2 = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone (R2 = 0.44) than erosion-resistant (R2 = 0.18) regions. As plant species richness increased from two to nine species·m-2, the coefficient of variation in soil erosion rate decreased significantly (R2 = 0.92). Plant species richness was a significant predictor of root biomass (R2 = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. CONCLUSION Our study indicates that soil stabilization and root biomass are positively associated with plant diversity. Diversity effects are more pronounced in biogeographical contexts where soils are erosion-prone (sandy, low organic content), suggesting that the pervasive influence of biodiversity on environmental processes also applies to the ecosystem service of erosion protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive sampling of an isolated dune system demonstrates clear patterns in soil fungal communities across a successional gradient.

Coastal sand dunes are extremely dynamic ecosystems, characterized by stark ecological succession gradients. Dune stabilization is mainly attributed to plant growth, but the establishment and survival of dune-inhabiting vegetation is closely linked to soil microorganisms and to the ecological functions they fulfill. Fungi are particularly important in this context, as some interact intimately w...

متن کامل

Plant Species Indicators of Physical Environment in Great Lakes Coastal Wetlands

Plant taxa identified in 90 U.S. Great Lakes coastal emergent wetlands were evaluated as indicators of physical environment. Canonical correspondence analysis using the 40 most common taxa showed that water depth and tussock height explained the greatest amount of species-environment interaction among ten environmental factors measured as continuous variables (water depth, tussock height, latit...

متن کامل

Distribution of nematodes in wetland soils with different distance from the Bohai sea

In order to elucidate the distribution of soil nematodes in coastal wetlands and the effect of different distance from the sea line on soil nematode communities, we investigated the community structure of soil nematodes in one wetland perpendicularly oriented from Bohai sea coastline. In June 2006, soil samples were collected from the Yellow River Delta wetlands, in Dongying city of Shandong Pr...

متن کامل

The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S

[1] Anthropogenic and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial v...

متن کامل

Caspian Coastal Forests: Arbuscular Mycorrhizal Fungi and Understory Vegetation

Moist and temperate Caspian forests are associated with a diversity of soil types and topography.  Although, natural history and ecological attributes of the Caspian vegetation is well-documented, little is known about mycorrhizae of the Caspian (Hyrcanian) flora. Samples of herbaceous plant species were collected from 4 pre-determined altitudes (-13 upto about 1500m above sea level, appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016